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A Motivating Question

What is the difference between these two point clouds (finite sets
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A Motivating Question

What is the difference between these two point clouds (finite sets of points in R?)?
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How can we algorithmically classify point clouds by their geometric structure?
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A k-simplex o € RY is the convex hull of k + 1 affinely independent points in RY.
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A O-simplex, a 1-simplex, a 2-simplex, and a 3-simplex.
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Simplicial Complexes

A k-simplex o € RY is the convex hull of k + 1 affinely independent points in RY.

VAR

A O-simplex, a 1-simplex, a 2-simplex, and a 3-simplex.
A simplicial complex K C R is a finite collection of simplices such that:

@ Simplices connect along the boundaries of other simplices.

o If o € K is a simplex, and 7 is a face of o, then 7 € K as well.

AN

A simplicial complex in R3. Has one 3-simplex, five 2-simplexes,
eleven 1-simplices, and seven O-simplices.
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Homology: Definition

Given a simplicial complex X, we may define its p* homology group Hp(X), an
algebraic construction generated by the (p + 1)-dimensional holes of X.

Thus, the rank of H,(X) gives the number of (p + 1)-dimensional holes in X.

Intuition: A "hole” in X is a collection of p-simplices that encloses a non-filled-in space.



Topological Prerequisites
[e]e] lele)
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Given a simplicial complex X, we may define its p™ homology group Hy(X), an
algebraic construction generated by the (p + 1)-dimensional holes of X.

Thus, the rank of H,(X) gives the number of (p + 1)-dimensional holes in X.

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.
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In the simplicial complex X C R3 above, H>(X) has rank ZERO,
H1(X) has rank three, and Ho(X) has rank two.
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Homology: Definition

Given a simplicial complex X, we may define its p™ homology group Hy(X), an
algebraic construction generated by the (p + 1)-dimensional holes of X.

Thus, the rank of H,(X) gives the number of (p + 1)-dimensional holes in X.

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.

N

In the simplicial complex X C R3 above, H>(X) has rank ONE,
H1(X) has rank three, and Ho(X) has rank two.
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H1(X) has rank THREE, and Hy(X) has rank two.
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Homology: Definition

Given a simplicial complex X, we may define its p™ homology group H,(X), an
algebraic construction generated by the (p + 1)-dimensional holes of X.

Thus, the rank of H,(X) gives the number of (p + 1)-dimensional holes in X.

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.

e\

In the simplicial complex X C R3 above, H>(X) has rank zero,
H1(X) has rank three, and Ho(X) has rank two.

We will work with simplicial complexes X in R?, in which case:
@ the rank of Hp(X) is the number of connected components in X.
@ the rank of Hy(X) is the number of “unfilled polygons” in X.
o the rank of H,(X) for p > 2 is zero.
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Example #1. Simplicial complex A C R?.
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Homology: Examples (1/2)

Example #1. Simplicial complex A C R?.

The rank of Hy(A) is equal to. .. three.
The rank of Hi(A) is equal to. .. four.
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Homology: Examples (2/2)

Example #2. Simplicial complex B C R?.
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The rank of Ho(B) is equal to...one.
The rank of Hi(B) is equal to. ..



Topological Prerequisites
[e]e]e]le] )

Homology: Examples (2/2)

Example #2. Simplicial complex B C R?.

The rank of Ho(B) is equal to...one.
The rank of Hi(B) is equal to...one.
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Vietoris-Rips Complexes

Question: How do we relate point clouds with simplicial complexes?

Given a point cloud S C RY, the Vietoris-Rips Complex VR. for reals ¢ > 0 is the
simplicial complex containing all simplexes whose diameter is less than e.

o o ° o .
. . .
L] . L )
. * o L .
. .
. . . 3 .
. M 3 e .
Ky K, K3 Ky Ks

Retrieved from [2] by M. De Lara. The complex VR is found

by constructing circles of radius 5 at each point, then drawing 1-simplexes
between points whose circles intersect.
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Vietoris-Rips Complexes

Question: How do we relate point clouds with simplicial complexes?

Given a point cloud S C RY, the Vietoris-Rips Complex VR. for reals ¢ > 0 is the
simplicial complex containing all simplexes whose diameter is less than e.

o o ° o .
. . .
L] . L )
. * o L .
. .
. . . 3 .
. M 3 e .
Ky K, K3 Ky Ks

Retrieved from [2] by M. De Lara. The complex VR is found

by constructing circles of radius 5 at each point, then drawing 1-simplexes
between points whose circles intersect.

Approach: Which topological features persist between Vietoris-Rips Complexes?
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The ranks of persistent homology groups Hy'~?(S) tell us the number of
p-dimensional holes that persist from VR, (S) to VR, (S).
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Persistent Homology (1/2)

The ranks of persistent homology groups Hy'~?(S) tell us the number of
p-dimensional holes that persist from VR, (S) to VR, (S).

Example. Take S = {(—4,0),(0,4), (4,0),(0,—4),(9,0)} C R2.

Shown above are VRs(S), VR7(S), and VRy(S).
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Persistent Homology (1/2)

The ranks of persistent homology groups Hy'~?(S) tell us the number of
p-dimensional holes that persist from VR, (S) to VR, (S).

Example. Take S = {(—4,0),(0,4), (4,0),(0,—4),(9,0)} C R2.

Shown above are VRs(S), VR7(S), and VRy(S).

Then H?™7(S) has rank 1, since the hole in VRs(S) persists to VR;(S).
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Persistent Homology (1/2)

The ranks of persistent homology groups Hy'~?(S) tell us the number of
p-dimensional holes that persist from VR, (S) to VR, (S).

Example. Take S = {(—4,0),(0,4), (4,0),(0,—4),(9,0)} C R2.

Shown above are VRs(S), VR7(S), and VRy(S).

Then H?™7(S) has rank 1, since the hole in VRs(S) persists to VR;(S).
But H{7°(S) has rank 0, since the hole in VR;(S) does not persist to VRy(S).



Persistent Homology
[ele]e] Je]

Persistent Homology (2/2)

Topological features have birth times and death times: (b;, d;).

o OJ .
L] L] L]
o o o o
. ® . O .
L] L]
L] L] . L] L]
. * . e .
Ky K, K3 Ky Ks

Important features are marked by long lifetimes d; — b;.



Persistent Homology
[ele]ele] )

Persistence Landscapes

Summarize {(bj, di)} with the persistence landscape A : N x R — [0, oo].

(Precise definition of X.) For birth-death pairs (b;, d;), define:
fib; ;) * R = [0, 0] by fip, 4;)(x) := max{0, min{x — b;, di — x}}.

Then A(k, x) is the k™ largest value of fib;.d;) (X) across all 7.

Persistence landscapes for a point cloud S sampled from
the perimeter of triangle with vertices {(—10,0), (0,4), (10,0)}.
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Persistence Landscapes

Summarize {(bj, di)} with the persistence landscape A : N x R — [0, oo].

(Precise definition of X.) For birth-death pairs (b;, d;), define:
fib; ;) * R = [0, 0] by fip, 4;)(x) := max{0, min{x — b;, di — x}}.

Then A(k, x) is the k™ largest value of fib;.d;) (X) across all 7.

Persistence landscapes for a point cloud S sampled from
the perimeter of triangle with vertices {(—10,0), (0,4), (10,0)}.
o Taller peaks correlate with more important, isolated features.

@ We can perform statistical analysis on the function A.
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Philosophy: Topological vs. Geometric Features

What can Topological Data Analysis (TDA) say about a point cloud?

Topological Structure.
@ Global information, such as # of holes.

@ It is expected and known that TDA can capture topological structure.

Geometric Structure?
o Local information, such as sharpness of angles.
@ It is not clear that TDA can capture geometric structure.

@ Our project demonstrates that TDA can indeed capture geometric structure.
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These two point clouds have noticeably different topological structures.
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Applications: Topological Structure

These two point clouds have noticeably different topological structures.

Their corresponding persistence landscapes also have noticeable differences.

@ The plot of A(0, e) (in pink) has one hump at left, and two humps at right.
e (The two humps at right are not visible above, but they do exist.)

o The plot of A(1,e) (in teal) has no humps at left, and one hump at right.
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Applications: Geometric Structure (1/5)

We compare average persistent landscapes of isosceles triangles with base angle
0 € {5°,10°,...,85°}, averaging over 25 samples for each 0.

0.002

- 0.000

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 10

The entry at (a, b) indicates the distance between the persistence landscapes
for @ = (5a)° and 0 = (5b)°. (So, for example, the (a, a) entry is always zero.)
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Applications: Geometric Structure (2/5)

0012
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Persistence landscapes for § = 20° and 0 = 65° are very distant.
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Applications: Geometric Structure (3/5)

.
"
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oEEn .
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0.000
o 5 9 10 1 12 13 1w 15 16

Persistence landscapes for § = 60° and 6 = 65° are very close.
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Applications: Geometric Structure (4/5)
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0004
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Persistence landscapes for § = 15° and 6 = 85° very close,
but this is expected; they both have tight angles.
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Applications: Geometric Structure (5

Average persistence landscapes for § = 5° and 6 = 30°.

Concept: Use average persistence landscapes of common geometric figures as
“landmarks” to compare general point clouds against.
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