▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Differentiating Point Cloud Distributions Using Persistent Homology

Jason Mao Jonathan Rodríguez Figueroa

The Academy for Math, Science, and Engineering

October 12, 2024 MIT PRIMES Conference

Introduction ●O	Topological Prerequisites	Persistent Homology 00000	Applications of Persistent Homology
Table of Co	ntents		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction

- Topological Prerequisites
- Persistent Homology
- Applications of Persistent Homology

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
O	00000	00000	0000000000

A Motivating Question

What is the difference between these two point clouds (finite sets of points in \mathbb{R}^2)?

(0.111, -0.065)	(-0.012, 0.166)	(0.149, 0.002)
(-0.084, 0.136)	(-0.059, -0.031)	(-0.059, -0.142)
(0.169, 0.008)	(-0.021, 0.172)	(-0.028, -0.136)
(-0.073, 0.05)	(-0.082, -0.047)	(0.106, -0.016)
(-0.061, 0.2)	(0.175, 0.027)	(-0.061, 0.14)
(0.233, 0.008)	(-0.047, -0.14)	(0.139, 0.035)
(0.123, -0.002)	(0.141, 0.033)	(0.156, 0.019)
(0.084, 0.1)	(0.13, -0.001)	(-0.065, -0.163)
(-0.036, 0.169)	(0.163, -0.031)	(0.161, -0.026)
(0.078, -0.086)	(0.138, 0.077)	(0.057, -0.076)
(-0.079, 0.004)	(-0.027, 0.177)	(-0.063, -0.055)
(0.189, 0.003)	(0.179, 0.062)	(-0.094, -0.118)

(0.022, 0.172)	(0.098, 0.127)	(0.085, 0.171)
(-0.076, 0.085)	(0.046, 0.185)	(-0.139, 0.057)
(0.089, 0.143)	(-0.095, 0.094)	(0.159, -0.032)
(-0.08, 0.062)	(0.161, 0.103)	(-0.077, 0.1)
(0.017, -0.136)	(-0.149, 0.02)	(-0.049, -0.114)
(0.067, 0.17)	(-0.102, 0.075)	(0.18, -0.03)
(0.177, 0.054)	(0.082, -0.063)	(0.147, 0.0)
(0.139, 0.087)	(0.004, -0.128)	(-0.113, 0.066)
(-0.123, 0.005)	(0.075, 0.153)	(-0.082, -0.021)
(0.125, -0.047)	(-0.134, -0.006)	(0.038, 0.199)
(-0.033, 0.145)	(-0.099, 0.075)	(0.082, 0.133)
(0.025, 0.197)	(0.081, 0.192)	(0.072, -0.072)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
O	00000	00000	

A Motivating Question

What is the difference between these two point clouds (finite sets of points in \mathbb{R}^2)?

(0.111, -0.065)	(-0.012, 0.166)	(0.149, 0.002)
(-0.084, 0.136)	(-0.059, -0.031)	(-0.059, -0.142)
(0.169, 0.008)	(-0.021, 0.172)	(-0.028, -0.136)
(-0.073, 0.05)	(-0.082, -0.047)	(0.106, -0.016)
(-0.061, 0.2)	(0.175, 0.027)	(-0.061, 0.14)
(0.233, 0.008)	(-0.047, -0.14)	(0.139, 0.035)
(0.123, -0.002)	(0.141, 0.033)	(0.156, 0.019)
(0.084, 0.1)	(0.13, -0.001)	(-0.065, -0.163)
(-0.036, 0.169)	(0.163, -0.031)	(0.161, -0.026)
(0.078, -0.086)	(0.138, 0.077)	(0.057, -0.076)
(-0.079, 0.004)	(-0.027, 0.177)	(-0.063, -0.055)
(0.189, 0.003)	(0.179, 0.062)	(-0.094, -0.118)

(0.022, 0.172)	(0.098, 0.127)	(0.085, 0.171)
(-0.076, 0.085)	(0.046, 0.185)	(-0.139, 0.057)
(0.089, 0.143)	(-0.095, 0.094)	(0.159, -0.032)
(-0.08, 0.062)	(0.161, 0.103)	(-0.077, 0.1)
(0.017, -0.136)	(-0.149, 0.02)	(-0.049, -0.114)
(0.067, 0.17)	(-0.102, 0.075)	(0.18, -0.03)
(0.177, 0.054)	(0.082, -0.063)	(0.147, 0.0)
(0.139, 0.087)	(0.004, -0.128)	(-0.113, 0.066)
(-0.123, 0.005)	(0.075, 0.153)	(-0.082, -0.021)
(0.125, -0.047)	(-0.134, -0.006)	(0.038, 0.199)
(-0.033, 0.145)	(-0.099, 0.075)	(0.082, 0.133)
(0.025, 0.197)	(0.081, 0.192)	(0.072, -0.072)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
O	00000	00000	

A Motivating Question

What is the difference between these two point clouds (finite sets of points in \mathbb{R}^2)?

(0.111, -0.065)	(-0.012, 0.166)	(0.149, 0.002)
(-0.084, 0.136)	(-0.059, -0.031)	(-0.059, -0.142)
(0.169, 0.008)	(-0.021, 0.172)	(-0.028, -0.136)
(-0.073, 0.05)	(-0.082, -0.047)	(0.106, -0.016)
(-0.061, 0.2)	(0.175, 0.027)	(-0.061, 0.14)
(0.233, 0.008)	(-0.047, -0.14)	(0.139, 0.035)
(0.123, -0.002)	(0.141, 0.033)	(0.156, 0.019)
(0.084, 0.1)	(0.13, -0.001)	(-0.065, -0.163)
(-0.036, 0.169)	(0.163, -0.031)	(0.161, -0.026)
(0.078, -0.086)	(0.138, 0.077)	(0.057, -0.076)
(-0.079, 0.004)	(-0.027, 0.177)	(-0.063, -0.055)
(0.189, 0.003)	(0.179, 0.062)	(-0.094, -0.118)

(0.022, 0.172)	(0.098, 0.127)	(0.085, 0.171)
(-0.076, 0.085)	(0.046, 0.185)	(-0.139, 0.057)
(0.089, 0.143)	(-0.095, 0.094)	(0.159, -0.032)
(-0.08, 0.062)	(0.161, 0.103)	(-0.077, 0.1)
(0.017, -0.136)	(-0.149, 0.02)	(-0.049, -0.114)
(0.067, 0.17)	(-0.102, 0.075)	(0.18, -0.03)
(0.177, 0.054)	(0.082, -0.063)	(0.147, 0.0)
(0.139, 0.087)	(0.004, -0.128)	(-0.113, 0.066)
(-0.123, 0.005)	(0.075, 0.153)	(-0.082, -0.021)
(0.125, -0.047)	(-0.134, -0.006)	(0.038, 0.199)
(-0.033, 0.145)	(-0.099, 0.075)	(0.082, 0.133)
(0.025, 0.197)	(0.081, 0.192)	(0.072, -0.072)

How can we algorithmically classify point clouds by their geometric structure?

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	●0000	00000	
Table of Co	ontents		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction

- Opological Prerequisites
- Persistent Homology
- Applications of Persistent Homology

Introduction 00	Topological Prerequisites ○●○○○	Persistent Homology 00000	Applications of Persistent Homology
Simplicial C	Complexes		

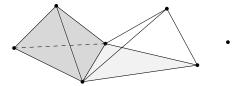
A *k*-simplex $\sigma \in \mathbb{R}^d$ is the convex hull of k + 1 affinely independent points in \mathbb{R}^d .



A 0-simplex, a 1-simplex, a 2-simplex, and a 3-simplex.

・ロト ・ 四ト ・ ヨト ・ コト

- A simplicial complex $K \subseteq \mathbb{R}^d$ is a finite collection of simplices such that:
 - Simplices connect along the boundaries of other simplices.
 - If $\sigma \in K$ is a simplex, and τ is a face of σ , then $\tau \in K$ as well.



A simplicial complex in \mathbb{R}^3 . Has one 3-simplex, five 2-simplexes, eleven 1-simplices, and seven 0-simplices.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

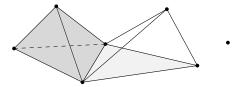
Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	000000000
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

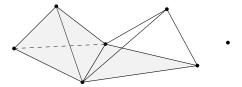


In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank ZERO, $H_1(X)$ has rank three, and $H_0(X)$ has rank two.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	000000000
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

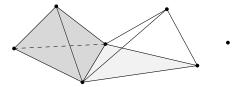


In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank ONE, $H_1(X)$ has rank three, and $H_0(X)$ has rank two.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	000000000
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

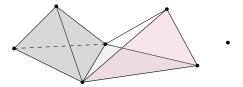


In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank zero, $H_1(X)$ has rank **THREE**, and $H_0(X)$ has rank two.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	000000000
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

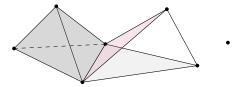


In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank zero, $H_1(X)$ has rank **THREE**, and $H_0(X)$ has rank two.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	000000000
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

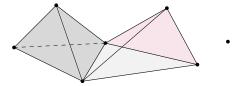


In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank zero, $H_1(X)$ has rank **THREE**, and $H_0(X)$ has rank two.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00●00	00000	000000000
Homology:	Definition		

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.

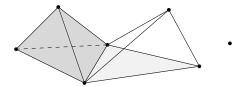


In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank zero, $H_1(X)$ has rank **THREE**, and $H_0(X)$ has rank two.

algebraic construction generated by the (p + 1)-dimensional holes of X.

Thus, the rank of $H_p(X)$ gives the number of (p+1)-dimensional holes in X.

Intuition: A "hole" in X is a collection of p-simplices that encloses a non-filled-in space.



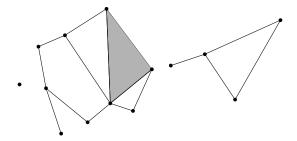
In the simplicial complex $X \subseteq \mathbb{R}^3$ above, $H_2(X)$ has rank zero, $H_1(X)$ has rank three, and $H_0(X)$ has rank two.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We will work with simplicial complexes X in \mathbb{R}^2 , in which case:

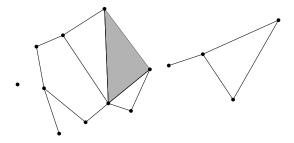
- the rank of $H_0(X)$ is the number of connected components in X.
- the rank of $H_1(X)$ is the number of "unfilled polygons" in X.
- the rank of $H_p(X)$ for $p \ge 2$ is zero.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	000●0	00000	
Homology:	Examples $(1/2)$		



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

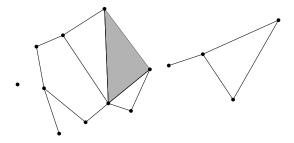
Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	000●0	00000	000000000
Homology:	Examples $(1/2)$		



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

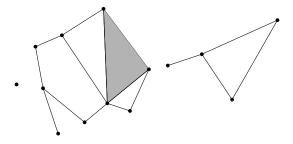
The rank of $H_0(A)$ is equal to...

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	000●0	00000	000000000
Homology:	Examples $(1/2)$		



The rank of $H_0(A)$ is equal to... three. The rank of $H_1(A)$ is equal to...

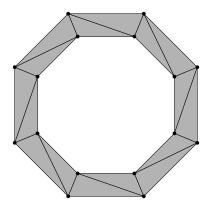
Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	000●0	00000	000000000
Homology:	Examples $(1/2)$		



▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

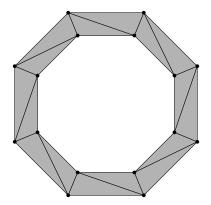
The rank of $H_0(A)$ is equal to... three. The rank of $H_1(A)$ is equal to... four.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	0000●	00000	
Homology:	Examples (2/2)		



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

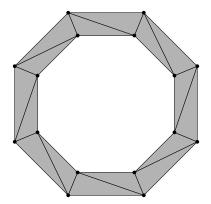
Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	0000●	00000	
Homology:	Examples $(2/2)$		



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The rank of $H_0(B)$ is equal to...

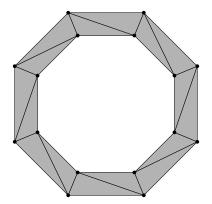
Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	0000●	00000	
Homology:	Examples (2/2)		



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The rank of $H_0(B)$ is equal to... one. The rank of $H_1(B)$ is equal to...

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	0000●	00000	
Homology:	Examples (2/2)		



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The rank of $H_0(B)$ is equal to... one. The rank of $H_1(B)$ is equal to... one.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
OO	00000	●0000	
Table of Cor	itents		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction

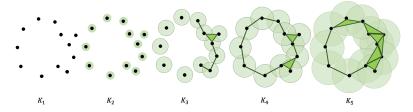
- Topological Prerequisites
- Persistent Homology
- Applications of Persistent Homology

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00		○●○○○	000000000
Vietoris-Rips	s Complexes		

Question: How do we relate point clouds with simplicial complexes?

Question: How do we relate point clouds with simplicial complexes?

Given a point cloud $S \subseteq \mathbb{R}^d$, the Vietoris-Rips Complex VR_{ϵ} for reals $\epsilon > 0$ is the simplicial complex containing all simplexes whose diameter is less than ϵ .

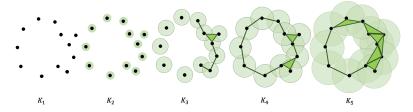


Retrieved from [2] by M. De Lara. The complex VR_{ϵ} is found by constructing circles of radius $\frac{\epsilon}{2}$ at each point, then drawing 1-simplexes between points whose circles intersect.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question: How do we relate point clouds with simplicial complexes?

Given a point cloud $S \subseteq \mathbb{R}^d$, the Vietoris-Rips Complex VR_{ϵ} for reals $\epsilon > 0$ is the simplicial complex containing all simplexes whose diameter is less than ϵ .



Retrieved from [2] by M. De Lara. The complex VR_{ϵ} is found by constructing circles of radius $\frac{\epsilon}{2}$ at each point, then drawing 1-simplexes between points whose circles intersect.

Approach: Which topological features persist between Vietoris-Rips Complexes?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00000	00●00	000000000
Persistent Ho	mology (1/2)		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The ranks of persistent homology groups $H_{\rho}^{\epsilon_1 \to \epsilon_2}(S)$ tell us the number of p-dimensional holes that persist from $VR_{\epsilon_1}(S)$ to $VR_{\epsilon_2}(S)$.

Introduction 00	Topological Prerequisites	Persistent Homology 00●00	Applications of Persistent Homology
Persistent H	omology (1/2)		

The ranks of persistent homology groups $H_p^{\epsilon_1 \to \epsilon_2}(S)$ tell us the number of *p*-dimensional holes that persist from $VR_{\epsilon_1}(S)$ to $VR_{\epsilon_2}(S)$.

Example. Take $S = \{(-4, 0), (0, 4), (4, 0), (0, -4), (9, 0)\} \subseteq \mathbb{R}^2$.

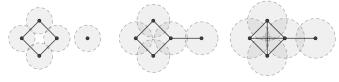


Shown above are $VR_6(S)$, $VR_7(S)$, and $VR_9(S)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The ranks of persistent homology groups $H_p^{\epsilon_1 \to \epsilon_2}(S)$ tell us the number of *p*-dimensional holes that persist from $VR_{\epsilon_1}(S)$ to $VR_{\epsilon_2}(S)$.

Example. Take $S = \{(-4, 0), (0, 4), (4, 0), (0, -4), (9, 0)\} \subseteq \mathbb{R}^2$.



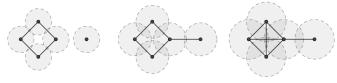
Shown above are $VR_6(S)$, $VR_7(S)$, and $VR_9(S)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then $H_1^{6\to 7}(S)$ has rank 1, since the hole in $VR_6(S)$ persists to $VR_7(S)$.

The ranks of persistent homology groups $H_p^{\epsilon_1 \to \epsilon_2}(S)$ tell us the number of *p*-dimensional holes that persist from $VR_{\epsilon_1}(S)$ to $VR_{\epsilon_2}(S)$.

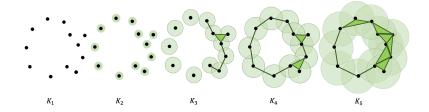
Example. Take $S = \{(-4, 0), (0, 4), (4, 0), (0, -4), (9, 0)\} \subseteq \mathbb{R}^2$.



Shown above are $VR_6(S)$, $VR_7(S)$, and $VR_9(S)$.

Then $H_1^{6\to7}(S)$ has rank 1, since the hole in $VR_6(S)$ persists to $VR_7(S)$. But $H_1^{7\to9}(S)$ has rank 0, since the hole in $VR_7(S)$ does not persist to $VR_9(S)$.

Topological features have birth times and death times: (b_i, d_i) .



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Important features are marked by long lifetimes $d_i - b_i$.

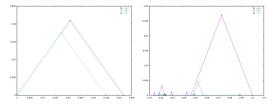
Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00	00000	0000●	
Persistence	Landscapes		

Summarize $\{(b_i, d_i)\}$ with the persistence landscape $\lambda : \mathbb{N} \times \mathbb{R} \to [0, \infty]$.

(Precise definition of λ .) For birth-death pairs (b_i , d_i), define:

$$f_{(b_i,d_i)}: \mathbb{R} \to [0,\infty]$$
 by $f_{(b_i,d_i)}(x) := \max\{0,\min\{x-b_i,d_i-x\}\}.$

Then $\lambda(k, x)$ is the k^{th} largest value of $f_{(b_i, d_i)}(x)$ across all *i*.



Persistence landscapes for a point cloud *S* sampled from the perimeter of triangle with vertices $\{(-10, 0), (0, 4), (10, 0)\}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

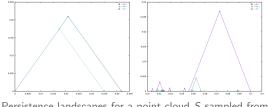
Introduction 00	Topological Prerequisites	Persistent Homology 0000●	Applications of Persistent Homology
Persistence	Landscapes		

Summarize $\{(b_i, d_i)\}$ with the persistence landscape $\lambda : \mathbb{N} \times \mathbb{R} \to [0, \infty]$.

(Precise definition of λ .) For birth-death pairs (b_i, d_i) , define:

$$f_{(b_i,d_i)}: \mathbb{R} \to [0,\infty]$$
 by $f_{(b_i,d_i)}(x) := \max\{0,\min\{x-b_i,d_i-x\}\}.$

Then $\lambda(k, x)$ is the k^{th} largest value of $f_{(b_i, d_i)}(x)$ across all *i*.



Persistence landscapes for a point cloud *S* sampled from the perimeter of triangle with vertices $\{(-10, 0), (0, 4), (10, 0)\}$.

- Taller peaks correlate with more important, isolated features.
- We can perform statistical analysis on the function λ .

Introduction 00	Topological Prerequisites	Persistent Homology 00000	Applications of Persistent Homology
Table of Co	ntents		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction

- Topological Prerequisites
- Persistent Homology
- Applications of Persistent Homology

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00		00000	○●○○○○○○○○
Philosophy:	Topological vs. Geom	etric Features	

What can Topological Data Analysis (TDA) say about a point cloud?

Philosophy: Topological vs. Geometric Features

What can Topological Data Analysis (TDA) say about a point cloud?

Topological Structure.

- Global information, such as # of holes.
- It is expected and known that TDA can capture topological structure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Philosophy: Topological vs. Geometric Features

What can Topological Data Analysis (TDA) say about a point cloud?

Topological Structure.

- Global information, such as # of holes.
- It is expected and known that TDA can capture topological structure.

Geometric Structure?

- Local information, such as sharpness of angles.
- It is not clear that TDA can capture geometric structure.
- Our project demonstrates that TDA can indeed capture geometric structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	Topological Prerequisites	Persistent Homology 00000	Applications of Persistent Homology
Applications	: Topological Structu	re	

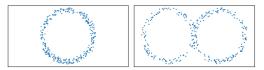
These two point clouds have noticeably different topological structures.

・ロト ・四ト ・ヨト ・ヨト

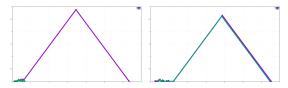
æ

Introduction 00	Topological Prerequisites	Persistent Homology 00000	Applications of Persistent Homology
Applications:	Topological Structure		

These two point clouds have noticeably different topological structures.



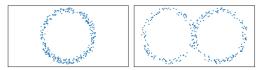
Their corresponding persistence landscapes also have noticeable differences.



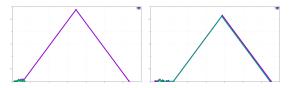
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction 00	Topological Prerequisites	Persistent Homology 00000	Applications of Persistent Homology
Applications:	Topological Structure		

These two point clouds have noticeably different topological structures.



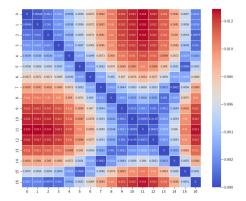
Their corresponding persistence landscapes also have noticeable differences.



- The plot of λ(0, •) (in pink) has one hump at left, and two humps at right.
 (The two humps at right are not visible above, but they do exist.)
- The plot of $\lambda(1, \bullet)$ (in teal) has no humps at left, and one hump at right.

Applications: Geometric Structure (1/5)

We compare average persistent landscapes of isosceles triangles with base angle $\theta \in \{5^{\circ}, 10^{\circ}, \dots, 85^{\circ}\}$, averaging over 25 samples for each θ .



The entry at (a, b) indicates the distance between the persistence landscapes for $\theta = (5a)^{\circ}$ and $\theta = (5b)^{\circ}$. (So, for example, the (a, a) entry is always zero.)

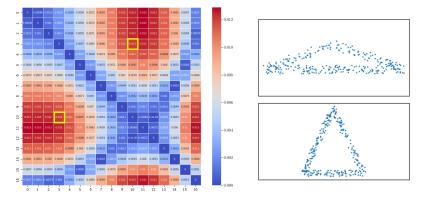
・ロト・西ト・ヨト・ヨー シック

Introduction 00 Topological Prerequisites

Persistent Homolog

Applications of Persistent Homology

Applications: Geometric Structure (2/5)



Persistence landscapes for $\theta = 20^{\circ}$ and $\theta = 65^{\circ}$ are very distant.

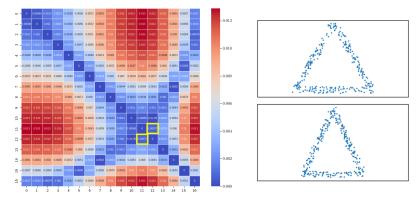
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction 00 Topological Prerequisites

Persistent Homolog

Applications of Persistent Homology

Applications: Geometric Structure (3/5)



Persistence landscapes for $\theta = 60^{\circ}$ and $\theta = 65^{\circ}$ are very close.

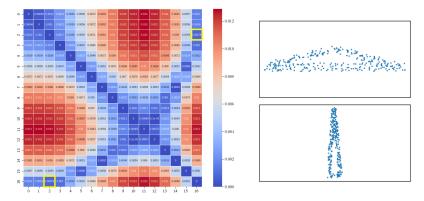
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 00 Topological Prerequisites

Persistent Homology

Applications of Persistent Homology

Applications: Geometric Structure (4/5)

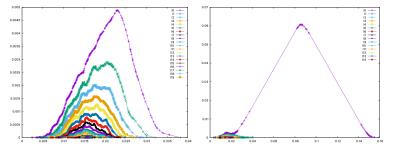


Persistence landscapes for $\theta = 15^{\circ}$ and $\theta = 85^{\circ}$ very close, but this is expected; they both have tight angles.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction 00	Topological Prerequisites	Persistent Homology 00000	Applications of Persistent Homology

Applications: Geometric Structure (5/5)



Average persistence landscapes for $\theta = 5^{\circ}$ and $\theta = 30^{\circ}$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Concept: Use average persistence landscapes of common geometric figures as "landmarks" to compare general point clouds against.

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00		00000	0000000000
Acknowledg	ments		

- I deeply thank my mentor Jonathan Rodríguez Figueroa for introducing me to this area of research and providing invaluable guidance, feedback, and resources throughout this research period.
- I thank PRIMES for providing the support that has made this research possible.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction	Topological Prerequisites	Persistent Homology	Applications of Persistent Homology
00		00000	00000000●
References			

- P. Bubenik, P. Dłotko: A persistence landscapes toolbox for topological statistics, Journal of Symbolic Computation **78** (2017) 91–114.
- M. De Lara: Persistent homology classification algorithm, Peer Journal Computer Science (2023).
- J. Curry et al: Decorated Merge Trees for Persistent Topology, Journal of Applied and Computational Topology **6** (2022) 371–428.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• H. Edelsbrunner, J. Harer: Computational Topology: An Introduction, American Mathematical Society (2010).