
Introduction Topological Prerequisites Persistent Homology Applications of Persistent Homology

Differentiating Point Cloud Distributions Using Persistent

Homology

Jason Mao
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Introduction Topological Prerequisites Persistent Homology Applications of Persistent Homology

A Motivating Question

What is the difference between these two point clouds (finite sets of points in R2)?

(0.111, -0.065) (-0.012, 0.166) (0.149, 0.002)

(-0.084, 0.136) (-0.059, -0.031) (-0.059, -0.142)

(0.169, 0.008) (-0.021, 0.172) (-0.028, -0.136)

(-0.073, 0.05) (-0.082, -0.047) (0.106, -0.016)

(-0.061, 0.2) (0.175, 0.027) (-0.061, 0.14)

(0.233, 0.008) (-0.047, -0.14) (0.139, 0.035)

(0.123, -0.002) (0.141, 0.033) (0.156, 0.019)

(0.084, 0.1) (0.13, -0.001) (-0.065, -0.163)

(-0.036, 0.169) (0.163, -0.031) (0.161, -0.026)

(0.078, -0.086) (0.138, 0.077) (0.057, -0.076)

(-0.079, 0.004) (-0.027, 0.177) (-0.063, -0.055)

(0.189, 0.003) (0.179, 0.062) (-0.094, -0.118)

(0.022, 0.172) (0.098, 0.127) (0.085, 0.171)

(-0.076, 0.085) (0.046, 0.185) (-0.139, 0.057)

(0.089, 0.143) (-0.095, 0.094) (0.159, -0.032)

(-0.08, 0.062) (0.161, 0.103) (-0.077, 0.1)

(0.017, -0.136) (-0.149, 0.02) (-0.049, -0.114)

(0.067, 0.17) (-0.102, 0.075) (0.18, -0.03)

(0.177, 0.054) (0.082, -0.063) (0.147, 0.0)

(0.139, 0.087) (0.004, -0.128) (-0.113, 0.066)

(-0.123, 0.005) (0.075, 0.153) (-0.082, -0.021)

(0.125, -0.047) (-0.134, -0.006) (0.038, 0.199)

(-0.033, 0.145) (-0.099, 0.075) (0.082, 0.133)

(0.025, 0.197) (0.081, 0.192) (0.072, -0.072)

How can we algorithmically classify point clouds by their geometric structure?
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Simplicial Complexes

A k-simplex σ ∈ Rd is the convex hull of k + 1 affinely independent points in Rd .

A 0-simplex, a 1-simplex, a 2-simplex, and a 3-simplex.

A simplicial complex K ⊆ Rd is a finite collection of simplices such that:

Simplices connect along the boundaries of other simplices.

If σ ∈ K is a simplex, and τ is a face of σ, then τ ∈ K as well.

A simplicial complex in R3. Has one 3-simplex, five 2-simplexes,

eleven 1-simplices, and seven 0-simplices.
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Homology: Definition

Given a simplicial complex X , we may define its pth homology group Hp(X ), an

algebraic construction generated by the (p + 1)-dimensional holes of X .

Thus, the rank of Hp(X ) gives the number of (p + 1)-dimensional holes in X .

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.
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algebraic construction generated by the (p + 1)-dimensional holes of X .

Thus, the rank of Hp(X ) gives the number of (p + 1)-dimensional holes in X .

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.

In the simplicial complex X ⊆ R3 above, H2(X ) has rank ZERO,

H1(X ) has rank three, and H0(X ) has rank two.
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Given a simplicial complex X , we may define its pth homology group Hp(X ), an

algebraic construction generated by the (p + 1)-dimensional holes of X .

Thus, the rank of Hp(X ) gives the number of (p + 1)-dimensional holes in X .

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.

In the simplicial complex X ⊆ R3 above, H2(X ) has rank ONE,

H1(X ) has rank three, and H0(X ) has rank two.
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Homology: Definition

Given a simplicial complex X , we may define its pth homology group Hp(X ), an

algebraic construction generated by the (p + 1)-dimensional holes of X .

Thus, the rank of Hp(X ) gives the number of (p + 1)-dimensional holes in X .

Intuition: A “hole” in X is a collection of p-simplices that encloses a non-filled-in space.

In the simplicial complex X ⊆ R3 above, H2(X ) has rank zero,

H1(X ) has rank three, and H0(X ) has rank two.

We will work with simplicial complexes X in R2, in which case:

the rank of H0(X ) is the number of connected components in X .

the rank of H1(X ) is the number of “unfilled polygons” in X .

the rank of Hp(X ) for p ≥ 2 is zero.
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Homology: Examples (1/2)

Example #1. Simplicial complex A ⊆ R2.

The rank of H0(A) is equal to. . . three.

The rank of H1(A) is equal to. . . four.
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Homology: Examples (2/2)

Example #2. Simplicial complex B ⊆ R2.

The rank of H0(B) is equal to. . . one.

The rank of H1(B) is equal to. . . one.
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Vietoris-Rips Complexes

Question: How do we relate point clouds with simplicial complexes?

Given a point cloud S ⊆ Rd , the Vietoris-Rips Complex VRϵ for reals ϵ > 0 is the

simplicial complex containing all simplexes whose diameter is less than ϵ.

Retrieved from [2] by M. De Lara. The complex VRϵ is found

by constructing circles of radius ϵ
2
at each point, then drawing 1-simplexes

between points whose circles intersect.

Approach: Which topological features persist between Vietoris-Rips Complexes?
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Persistent Homology (1/2)

The ranks of persistent homology groups Hϵ1→ϵ2
p (S) tell us the number of

p-dimensional holes that persist from VRϵ1(S) to VRϵ2(S).

Example. Take S = {(−4, 0), (0, 4), (4, 0), (0,−4), (9, 0)} ⊆ R2.

Shown above are VR6(S), VR7(S), and VR9(S).

Then H6→7
1 (S) has rank 1, since the hole in VR6(S) persists to VR7(S).

But H7→9
1 (S) has rank 0, since the hole in VR7(S) does not persist to VR9(S).
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Persistent Homology (2/2)

Topological features have birth times and death times: (bi , di ).

Important features are marked by long lifetimes di − bi .
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Persistence Landscapes

Summarize {(bi , di )} with the persistence landscape λ : N× R → [0,∞].

(Precise definition of λ.) For birth-death pairs (bi , di ), define:

f(bi ,di ) : R → [0,∞] by f(bi ,di )(x) := max{0,min{x − bi , di − x}}.

Then λ(k, x) is the k th largest value of f(bi ,di )(x) across all i .

Persistence landscapes for a point cloud S sampled from

the perimeter of triangle with vertices {(−10, 0), (0, 4), (10, 0)}.

Taller peaks correlate with more important, isolated features.

We can perform statistical analysis on the function λ.
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Philosophy: Topological vs. Geometric Features

What can Topological Data Analysis (TDA) say about a point cloud?

Topological Structure.

Global information, such as # of holes.

It is expected and known that TDA can capture topological structure.

Geometric Structure?

Local information, such as sharpness of angles.

It is not clear that TDA can capture geometric structure.

Our project demonstrates that TDA can indeed capture geometric structure.
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Applications: Topological Structure

These two point clouds have noticeably different topological structures.

Their corresponding persistence landscapes also have noticeable differences.

The plot of λ(0, •) (in pink) has one hump at left, and two humps at right.

(The two humps at right are not visible above, but they do exist.)

The plot of λ(1, •) (in teal) has no humps at left, and one hump at right.
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Applications: Geometric Structure (1/5)

We compare average persistent landscapes of isosceles triangles with base angle

θ ∈ {5◦, 10◦, . . . , 85◦}, averaging over 25 samples for each θ.

The entry at (a, b) indicates the distance between the persistence landscapes

for θ = (5a)◦ and θ = (5b)◦. (So, for example, the (a, a) entry is always zero.)
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Applications: Geometric Structure (2/5)

Persistence landscapes for θ = 20◦ and θ = 65◦ are very distant.
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Applications: Geometric Structure (3/5)

Persistence landscapes for θ = 60◦ and θ = 65◦ are very close.
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Applications: Geometric Structure (4/5)

Persistence landscapes for θ = 15◦ and θ = 85◦ very close,

but this is expected; they both have tight angles.
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Applications: Geometric Structure (5/5)

Average persistence landscapes for θ = 5◦ and θ = 30◦.

Concept: Use average persistence landscapes of common geometric figures as

“landmarks” to compare general point clouds against.
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to this area of research and providing invaluable guidance, feedback, and

resources throughout this research period.

I thank PRIMES for providing the support that has made this research

possible.



Introduction Topological Prerequisites Persistent Homology Applications of Persistent Homology

References

P. Bubenik, P. D lotko: A persistence landscapes toolbox for topological

statistics, Journal of Symbolic Computation 78 (2017) 91–114.

M. De Lara: Persistent homology classification algorithm, Peer Journal

Computer Science (2023).

J. Curry et al: Decorated Merge Trees for Persistent Topology, Journal of

Applied and Computational Topology 6 (2022) 371–428.

H. Edelsbrunner, J. Harer: Computational Topology: An Introduction,

American Mathematical Society (2010).


	Introduction
	Topological Prerequisites
	Persistent Homology
	Applications of Persistent Homology

